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THIN-WALLED BARRELL SHELL  

DEFLECTIVE MODE ANALYSIS 
 

The paper deals with the deflective mode of steel rotary shell with different form of 

outer surface that are loaded with axially symmetric load. The results show solution of shell 

voltage and strain equation under the load that is described by exponential law and based on 

efforts from temperature differentials. Besides, the paper represents design formulas for 

deflection analysis, running bending moments and running transverse forces in shells with 

different abutment to the basis. It was shown the basic function of deflection and maximum 

value of relevant parameters of the reaction. The analysis of aspects about efficiency of using 

corrugated wall for steel barrel shell is done. The results in analytical and graphical form are 

shown. According to resulting formulas, it was made comparative calculations of shells with 

constant and variable wall thickness. 

Keywords: barrel shell, exponential law, deflection functions, state of stress, zone of 

end effect. 
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АНАЛІЗ НАПРУЖЕНО-ДЕФОРМОВАНОГО СТАНУ 

ТОНКОСТІННИХ ЦИЛІНДРИЧНИХ ОБОЛОНОК 
 

Стаття присвячена дослідженню напружено-деформованого стану сталевих 

оболонок обертання, з різною формою зовнішньої поверхні, звантажених 

осесиметричним навантаженням. Отримане рішення рівняння напружень і 

деформацій оболонки при навантаженні, що описується експоненціальним законом та 

з урахуванням зусиль від перепаду температури. Зокрема, представлені розрахункові 

формули для визначення прогинів, погонних згинальних моментів та погонних 

поперечних сил в оболонках з різним примиканням до основи. Приведені основні функції 

прогинів, а також максимальні значення відповідних параметрів реакції. Виконаний 

аналіз аспектів, щодо ефективності застосування гофрованої стінки для сталевих 

циліндричних оболонок. Результати представлені в аналітичному та графічному 

вигляді. Відповідно до отриманих формул, виконані порівняльні розрахунки оболонок з 

постійною та змінною товщиною стінки. 

Ключові слова: циліндрична оболонка, експоненціальний закон, функції прогинів, 

напружений стан, зона крайового ефекту. 
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Introduction. Steel rotary shell is a prototype of many real constructions. In particular 

it is the prototype of cylindrical capacities for keeping bulk material which exploration was in 

the last authors’ works. In this paper barrel shells are examined from this point, and it is the 

vector to be researched. But the resulting aspects can be used in other branches of material 

durability and construction elements. 

The analysis of the last researches and publications. A lot of national and foreign 

scientists explore the deflective mode of barrel shells [1 – 10]. Though the named sources are 

purely theoretical and the given formulas are not appropriate enough for practical solving of 

calculation and designing capacities for keeping bulk materials. 

Parts of the general problem that were not researched earlier. The determination of 

the internal efforts and displacement of the thin-walled barrel shell on different boundary 

conditions is shown in many scientific and reference sources. However, there must be pointed 

out particular concepts that were not examined yet. First of all, it is to find a solution under 

the load. It is described by the exponential law that is typical for bulk material pressure. 

Secondly, there is no analysis of aspects about efficiency of using corrugated plate for the 

shell surface. The achieved results are useful for further examination of shells that are 

supported by upright stiffening rib. 

Problem statement. The general aim of research is the solution of shell voltage and 

strain equation under the load that is described by exponential law, and derivation of practical 

formulas for deflection analysis, running bending moments and running transverse forces in 

shells with different abutment to the basis. 

Main materials and results. The shell with the diameter Dw and the height Hw is loaded 

with axially symmetric load p(x). Independent variable x indicates that radial load p(x) in general 

case can be changeable in length or function on the bounded length of shell. To determine voltage 

and strain of such shell, there should be solved the differential equation [1, 2, 9, 10] 

     4
4

4
4 w

r

d w x p x
k x

Ddx
   ,      (1) 

where Dr is the cylindrical stiffness of the shell on flexion in circular direction;  w x is 

the function of the shell body displacement. 

Coefficient wk  can be defined using the equation 

 4 2
,w ef r w rk Et D D ,   4 2

w w w rk Et D D ,    (2) 

where , ,1ef r w w wt t l l is the thickness of plates (stiffness of its equivalent to the 

stiffness of the corrugated profile with the thickness tef) that receive circular efforts; lw,1 is the 

length of corrugation sweep on the corrugation plate of shell lw; E is the elastic modulus of the 

material. 

Equation (1) is used for the shell with the constant thickness tw regardless of the surface 

form. It can be both smooth and corrugate. The used simplification about constancy of 

thickness substantiates that numerical results solving of the differentiate equation (1) with the 

changeable thickness nearly do not differ from solving when tw = const if to assume the 

thickness of wall as the end of the shell. 

By using trigonometric function, the solution for the differentiate equation (1) is the 

next  

   1 2 3 4 *( ) sin( ) cos( ) sin( ) cos( )w wk x k x
w w w ww x e C k x C k x e C k x C k x w

     , (5) 

where C1, C2, C3 and C4 are constant integrations, that are defined by boundary 

conditions, and w*(x) is the partial solution of the differentiate equation, that is defined by 

analytical form of putting down the function p(x). 
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As it is know, deflection of shell that is defined by equation (5) is the two pairs of 

rapidly decayed periodical functions. Each of them decays depending on the distance from the 

top or lower edge. For the shells long enough that are met the demands of membrane theory 

of shells, both parts of equation for deflection have an independent meaning. The first part 

describes image of strained condition near the shell surface, and the second – on the top edge. 

Considering this feature and considering further shells pinched near the surface, it can be 

considered that C3 and C4 are equal to zero. 

Considering two variants of solution, when p(x) = p0 and p(x) = p0(1–e
x

), it can be 

conformed the famous Yansen-Kenen’s formula. In the first case partial solution wd(x) has an 

easy solve such as 
4

* 0 0 / (4 )w rw w p k D  ,        (6) 

where 0w is an introduced designation for this equation. 

Constant integrations on condition are defined, when x = 0 the deflection and rotation 

angle are equal to zero. After a number of calculations there is 

  0( ) 1 sin( ) cos( )wk x
w ww x w e k x k x

   ,      (7) 

It must be pointed out that deflection of shells from the shaped sheet will be less only on 

Aw quantity than the shells from the flat sheet (area ratio of cross-sections of shaped and flat 

sheets). Since the given quantity is not very different from the unit, shaping of sheets during 

the axially symmetric load has a quite indirect value. During the load  

p(x) = p0(1–e
x

) = p0Kp(x) partial solution of differential equation (1) appropriate to solve in 

the form of 

* 0 4

e
( ) 1

1 0.25

x

w x w



 
    

 ,       (8) 

where =/kw is the ratio of the congruent coefficient. 

General solution of the differentiate equation is quite cumbersome 

  
  

0

(1 )
0 4

( ) 1 sin( ) cos( )

1 (1 )sin( ) cos( ) .
(1 0.25 )

w

w

k x
w w

x
k x

w w

w x w e k x k x

e
w e k x k x









 

   

   


   (9) 

Since for every sort of agricultural production the coefficient  is quite little, therefore 

4
 acquire lesser value. It allows to equal this coefficient to zero and to put down the formula 

(9) in easier form 

  0( ) ( ) 1 sin( ) cos( )wk x
p w ww x w K x e k x k x

   ,    (10) 

For levels x that are detached from the shell surface, the quantity indicated in braces can 

be neglected and rate deflections using the equation 

0( ) ( )pw x w K x .        (11) 

Parameters 0p ,   and  have the next value in problems of barrel shells calculation 

0 04 , 4 , ,wH
g w g g wp D f f D e

          (12) 

where g, fg and 0 are the calculated value of specific gravity, frictional coefficient and 

coefficient of lateral pressure for food storage. 

It should be defined how far the levels x  have to be from the shell surface and to be 

analyzed the effect from the shaping sheets on the given quantity. There should be performed 

the rate of decay speed of functions (7) and (9) with the help of crest value ratio of deflections  

in the range of two adjacent half-waves. Let the length of half-wave be line  =  / kw.  

For the cases of constant and exponent load the decay speed is characterized by the quality wke
  
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(for exponential load (1 )w wk k
e e
    ), i. e. top levels for which / wx k can be considered as 

distant enough from the surface. Considering that shells, consisting of shaped sheets, have the 

coefficient value wk  it is lesser than the shells with flat wall. That is why it has longer zone of 

end effect in k  times 

4

0

wr

ef

tD
k

D t
   ,        (13) 

where value 0D  is defined as 3 2
0 12(1 )wD Et     . 

Perform the rate of internal efforts using the classic ratios of materials strength: 

 circular normal strain 

( ) 2 ( )h
w

E
x w x

D
  ;        (14) 

 running bending moments  
2

2

( )
( )x r

d w x
M x D

dx
  ;       (15) 

 running transverse forces 
3

3

( ) ( )
( ) x

x r

dM x d w x
Q x D

dx dx
   .      (16) 

The received analytic dependences have been summarized to the Table 1, where apart 

from the equations for bending moments and transverse forces, the main functions of 

deflection and maximum value of the corresponding parameters of reaction are given. 

The procedure of internal force factor receiving has to be studied additionally when the 

shell has a swing joint to the surface. Results in accurate mathematical statements for ( )xM x  

and ( )xQ x , when the exponent load operates, are quite cumbersome. But the used 

simplification about lesser coefficient  allows significantly simplify final equations. 

Attention to important feature of received dependences should be paid to. If the quantity of 

shell deflections from flat and shaped sheets is practically not different, this assertion is not 

true for value of bending moments and transverse forces. 

For shells performed from shaped sheets, bending moments will be bigger in 2k  times, 

and transverse forces – in 4k  times. It is explicated by enlarged length of end effect zone that 

in k  times lesser in shells with the flat wall than with the shaped. More clearly the given 

feature is illustrated on the Drawing 1. 

I should be concentrated on one more aspect of using the differentiate equation (1). 

Respectively to norms of design, such as NBS (National Building Standards) [12] and 

Eurocode [13], spectrum of efforts from axially symmetric pressure of bulk material is always 

added by efforts from temperature differential t . Considering that this differential does not 

depend on height x , the additional deflections are equal to 0.5t t ww D t  , where t  is the 

coefficient of temperature expansion. 

But the given deflection can be induced by some uniformly distributed load tp  over 

girth and height of the shell that is connected with tw ratio 

2 / (4 )t t w ww p D Et .       (17) 

Probably the density of load 

2 w
t t

w

t
p tE

D
  .        (18) 
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Table 1 – Design equations for determination of deflections  

and internal efforts in shells with different abutment to the basis 
 

№ Equation R(x)  xmax Rmax 

The shell stiffened near the surface (uniform load) 

1   0( ) 1 sin( ) cos( )wk x
w ww x w e k x k x

     max 01.043w w  

2  0

2
( ) cos( ) sin( )

2
wk x

x w w

w

p
M x e k x k x

k

   0 
0

,max 2
0.5x

w

p
M

k
  

3 
20( ) 1 2sin

2
wk x w

x
w

p k x
Q x e

k

       
  

 0 
0

,maxx
w

p
Q

k
  

The shell stiffened near the surface (exponential load) 

4   0( ) ( ) 1 sin( ) cos( )wk x
p w ww x w K x e k x k x

      max 01.043 pw w K   

5  0

2
( ) ( ) cos( ) sin( )

2
wk x

x p w w

w

p
M x K x e k x k x

k

   0 
0

,max 2
0.5 (1 )x

w

p
M

k
   

6 
20( ) ( ) 1 2sin

2
wk x w

x p
w

p k x
Q x K x e

k

       
  

 0 
0

,max (1 )x
w

p
Q

k
   

The shell with a swing joint to the surface (uniform load) 

7 0( ) 1 cos( )wk x
ww x w e k x

   
 

3

4
  max 01.067w w  

8 
0
2

( ) sin( )
2

wk x
x w

w

p
M x e k x

k

  
1

4
  

0
,max 2

0.161x

w

p
M

k
  

9  0( ) sin( ) cos( )
2

wk x
x w w

w

p
Q x e k x k x

k

   0 
0

,max
2

x
w

p
Q

k
  

The shell with a swing joint to the surface (exponential load) 

10 0( ) ( ) 1 cos( )wk x
p ww x w K x e k x

   
 

3

4
  max 0

3
1.067

4
pw w K    
 

 

11 
0

2
( ) ( ) sin( )

2
wk x

x p w

w

p
M x K x e k x

k

  1

4
  

0
,max 2

0.161 (1 )x

w

p
M

k
   

12  0( ) ( ) sin( ) cos( )
2

wk x
x p w w

w

p
Q x K x e k x k x

k

   0 
0

,max (1 )
2

x
w

p
Q

k
   

 

Thus, if to consider that p0 = pt, then we can use all the results that were obtained earlier 

for the load p(x) = p0. Using reference data of NBS (National Building Standards) [14] we will 

obtain quantitative assessment of the quantity pt for steel shells. Before this, we have to put 

down equation (18) in easy and convenient form 

5t w
w

t
p t

D


 .      (19) 

There should be considered the variant of solving differential equation (1) in the case 

when the thickness of the shell tef,r is changing over the height x  and find out how functional 

dependence tef(x) influence the deflective mode of the shell in comparison with the case when 

tef,r = const. 
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Figure 1 – Charts of deflections (a), running bending moments (b)  

and running transverse forces (c) for shell stiffened near the surface  

and with a swing joint to the surface (respectively d, f, g): 

 solid line – flat wall; dotted line – corrugated wall;  

black line – uniform load; gray line - exponential load 

 

 

a)   b)   c) 

 w x    xM x    xQ x   

wН  

 xQ x    w x    xM x   

d)   f)   g) 

wН  
wН  

wН  wН  
wН  
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The law of the thickness change over the height is considered in the form of power 

dependence 

, ,( ) ( ) exp ( )ef ef r w ef r w
w

x
t x t g x t

H


 
   

 
,     (20) 

where tef,r is the thickness of shells near the surface; w is non-dimensional parameter 

that is responsible for the form of curve gw(x). 

Since, the cylindrical stiffness Dr of the shell is the function of height x, the equation (1) 

must be put down in more general form [11] 
2 2

2 2 2

4 ( )( )
( ) ( ) ( )

ef
r

w

Et xd d w x
D x w x p x

dx dx D

 
  

 
,     (21) 

where Dr(x) is the function of cylindrical stiffness of shell that accordingly to equation 

(20) can be represented in form of the product Dr(x) = Drgw
k
(x); for shells with flat wall k = 3, 

and with corrugated wall k = 1. 

Considering the equation for Dr(x), the differentials of equation are revealed (21) 
4

4

4

( )
( ) ( ) 4 ( ) ( ) ( ) /k

w w w w r

d w x
g x g x k g x w x p x D

dx

 
   

 
   (22) 

where fw(x) is additional 
23 2

3 2 2

( ) ( )( ) ( )
( ) 2

k k
w w

w

dg x d g xd w x d w x
f x

dx dx dx dx
   .     (23) 

Using equation (20), there is set the equation (22) more specific form. Respectively for 

values k = 1 and k = 3 it is  
24 3 2

4

4 3 2 2

( ) ( ) ( ) 1 ( )
2 4 ( )

( )

w w
w

w w rw

d w x d w x d w x p x
k w x

H g x Ddx dx H dx

 
     ,   (24) 

24 3 2
2 4

4 3 2 2

( ) ( ) ( ) 1 ( )
( ) 6 9 4 ( )

( )

w w
w w

w w rw

d w x d w x d w x p x
g x k w x

H g x Ddx dx H dx

  
    

 
 .  (25) 

Differential equation (24) is simpler and its solution can be represented in the form that 

is similar to equation (5). Before making a general solution, take into consideration that the 

root of characteristic equation (24) is equal 

2

1 1 8
2

w w w

w w

k H
i

H




         

.      (26) 

Since for the barrel shells / 1w w wk H    

1 , 1
2 2

w w
w w w w w w w w

w w w w

k ik k ik k ik k ik
H k H k

    
            

   
.   (27) 

This simplification permits not to consider completely equations (24) and (25), but to 

replace them by simpler analogs, which will be used next 
4

4

4

( ) 1 ( )
4 ( )

( )
w

w r

d w x p x
k w x

g x Ddx
  .      (28) 

4
2 4

4

( ) 1 ( )
( ) 4 ( )

( )
w w

w r

d w x p x
g x k w x

g x Ddx
  .     (29) 

Thus, roots of characteristic equation for (1) and (24) can be considered as the same, and 

the general solution of the differential equation (24) assume in the form of equation (5). Partial 
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solution w* will be researched for the load of the form ( / )
0( ) w wx H

p x p e
    that takes all the 

analyzed variants (i. e. uniform and exponential load with different values of the parameter w. 

For the partial solution it is 

 /
0

* 4 4( / ) 4

w wx H

r w w w

p e
w

D H k

 

 




   

.      (30) 

A general solution of the differential equation (24) for the shell stiffened near the 

surface is function 

0

4 4
( ) 1 1 sin( ) cos( )

1 0.25 /

w

w

xs
k x w

w w
ww w

w e s
w x e k x k x

ks k

 
    

      
     

,   (31) 

where /w w ws H    is the auxiliary constant inserted for cancellation. 

Considering that sw /kw<<1 and s
4

w /k
4
w<<1, the equation (31) can be represented in the 

form 

  0( ) 1 sin( ) cos( )w wxs k x
w ww x w e e k x k x    .    (32) 

The similar method can be used to determine the deflections of shell, the load on which 

is circumscribed by Yansen-Kenen exponential law or on other conditions by the abutment of 

the shell to the surface. Thus, when the wall thickness is changed, obtained formulas of the 

Table 1 can be successfully used with only one difference – the result must be multiplied by 

coefficient /
( ) w wx H

K x e


  . 

Comparative calculations of shells with constant and variable thickness of wall indicate 

that more accurate calculation practically does not influence on quantity of bearing internal 

efforts (moments and transverse forces), but displays only on diagram of deflections. Nature 

of the given influence is illustrated in the Figure 2, it can be noticed that disregard of 

functional dependence tef,r(x) can lead to underestimation of shell deflections. Expansion of 

the given error is influenced by increase of thickness differences of shell near its surface and 

near the top. Il corresponds to relatively large parameter value w>1.0. 

 

 
 

Figure 2 – Charts of deflections for shell  

with a stiff (swing joint) abutment to the surface:  

I − w= 1.0; II − w= 0.5; III − w= 1.0; IV − w= 2.0; 

black line – uniform load; gray line – exponential load 

 

І 

ІІ 
ІІІ 

ІV 

І 

ІІ 

ІІІ 

ІV 

 w x
  

wН
  



Збірник наукових праць. Серія: Галузеве машинобудування, будівництво. − 1 (50) 2018. 77 

 

It should be mentioned that for Yansen-Kenen exponential load ordinate of maximum 

deflection of the shell xw,max is displaced to its top, when w is increased. So, gripe conditions l 

have less influence on numeric evaluation. To obtain formula xw,max, the Table 1 is used (p. 4 

or 10). Let’s differentiate any of these equations and equal the result to zero. Neglecting all 

the terms that are responsible for the behavior of the deflection function near the surface and 

liken the similar, we can obtain the next concise result; taking into account that parameter of 

the load   is equal to exp( )wH  

,max

exp( )1
ln w w

w
w w

H
x

H

 
  

 
   

,      (33) 

where the parameter   is determined by other equation of formulas (12) and is the 

function of the friction coefficient gf  and the lateral friction 0 . 

The formula indicates that xw,max depends on shell height Hw and diameter Dw, 

characteristics of the bulk material (parameters fg and 0) and the nature of shell thikness 

changing in height (parameter w). If to insert the obtained value xw,max in an equation from the 

Table 1 (p. 4 or 10), it can be determined maximum deflection of the shell that corresponds to 

accepted distribution of shell thickness in height. 

In clear mathematic formulation the solution of differential equation (29) of shell with 

flat wall has considerable analytical difficulties. If to admit that function w(x) is not very 

different from its analog for shell with corrugated wall (in adjustment of cylindrical stiffness 

and parameter kw), then to find a solution is easy enough and it corresponds to the 

circumscribed assumption. 

So, formulas in the Table 1 stay relevant, considering multiple by coefficient 
/

( ) w wx H
K x e


   considering distribution of thicknesses in height. 

Conclusion. 

1. Analytical dependences (Table 1) for deflection analysis, running bending moments and 

running transverse forces in shells with different abutment to the basis are obtained. the basic 

function of deflection and maximum value of relevant parameters of reaction have been shown. 

2. The deflections of shells are relatively little influenced by shaping of sheets under the 

axially symmetric load and has an indirect meaning have been confirmed theoretically. But 

the quantities of bending moments for shells with profiling sheets are bigger in 2k  times. And 

the quantities of transverse forces are bigger in 4k  times. 

3. Considering efforts from the temperature differential t , formula for defining the load 

tp  on steel shells has been obtained. 

4. Dependence of internal efforts and displacements for shells with changeable wall 

thickness represented in analytical and graphical forms have been established. 

5. Comparative calculations of shells with constant and variable thickness of the wall that 

correspond to formulas from the Table 1 have been made, considering multiple coefficient 
/

( ) w wx H
K x e


  . Distribution of thicknesses in height has been considered. 
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